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My overlap with Mike Creutz

I attended Lat’86@BNL at my own expense. During 
the meeting, I  handed my preprint to Mike and 
others.

In 1986, I was in the last year of graduate course@U. of Tokyo.

No arXiv existed. Tex was just appearing 
but not used.

Later I applied several postdoc positions including 
BNL. No email, of course. 
In January, 1987, I got a call in my apartment from Mike, offering a pos-doc 
position@BNL. I accepted it without hesitation. I started my 1st postdoc, in 
October, 1987 at BNL. 

On the first day@BNL, I asked Mike “What should I do as your post-doc ? “

He answered  “Whatever you would like to do.”

Even though I have appreciated Mike’s generosity, I had regretted for a long time 
that I had never collaborated with him in research.

Recently, this situation changes.



base on 
S.A and M. Creutz, PRL  112(2014) 141603 (arXiv:1402.1837[hep-lat])

This work has been done in collaboration with Mike Creutz.

http://www.google.co.jp/imgres?client=firefox-a&hs=oO9&sa=X&rls=org.mozilla%3Aja-JP-mac%3Aofficial&hl=ja&biw=1059&bih=569&tbm=isch&tbnid=mt22Em2qiI_I6M%3A&imgrefurl=http%3A%2F%2Fpersonensuche.dastelefonbuch.de%2FNamen%2FCreutz%2FMichael.html&docid=UuodPDKsvsDCuM&imgurl=https%3A%2F%2Flh5.googleusercontent.com%2F-sZ8w8p3ETJM%2FAAAAAAAAAAI%2FAAAAAAAAAFA%2FyvobsJuMjKY%2Fphoto.jpg&w=512&h=512&ei=DeDXUvjlJ4n4lAXmuIHQAw&zoom=1&ved=0CGkQhBwwBg&iact=rc&dur=3660&page=1&start=0&ndsp=10


1. Introduction

 term in QCDθ iθ
1

32π2
ε
µναβ

Fµν(x)Fαβ(x) ≡ iθq(x) CP odd

Neutron Electric Dipole Moment(NEDM) 

Model estimate

| !dn|/θ ! 10
−15 ∼ 10

−17e · cm

| !dn| ≤ 6.3 × 10
−26

e · cm

Experimental bound
{

θ = θQCD + θEW ≤ O(10−8)

Strong CP problem !

One possible “solution” mu = 0 massless up quark

chiral rotation

chiral anomaly

mu ūu� mu ūei2��5u

if mu = 0, we can make

� � �� = � + 2�Nf

�� = 0

by � = � �
2Nf

(Lattice QCD already ruled out this ?)

u� ei��5u, ū� ūei��5 ,



Mike Creutz, “Quark masses, the Dashen phase, and gauge field topology” 
arXiv:1306.1245[hep-lat]

Mike’s Oracles

md > 0 fixed, then

1. Nothing special happens at mu = 0.

2. Massless neutral pion: m�0 = 0 at mu =� mc < 0 .

3. Pion condensation (Dashen phase): ��0� �= 0 at mu < mc < 0.

4. � =� at mu = mc.
� =

1
V

�Q2� topological susceptibility

5. � = 0 at mu = 0.

In this talk, I show the above properties by ChPT including the anomaly effect. 
In addition, we discuss an interesting prediction related to these in 2-flavor QCD.

critical quark mass

?



ChPT with “anomaly”

Note: Massless up quark and Dashen phase in
ChPT
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1 Introduction

We explicitly demonstrate various claims in ”Quark masses, the Dashen phase,
and gauge field topology”(M. Creutz, arXiv:1306.1245), using 2-flavor ChPT
with the anomaly contribution. In addition, we propose to define ”massless up
quark” from the vanishing topological susceptibility χ.

1.1 ChPT analysis

In this report, we use the following Chiral perturbation theory (ChPT) La-
grangian at the leading order with the effect of anomaly through the determinate
term as

L =
f2

2
tr
(
∂µU∂µU†)− 1

2
tr
(
M†U + U†M

)
− ∆

2
(
det U + detU†) , (1)

where f is the pion decay constant, M is a quark mass matrix, and ∆ is a
positive constant, which give an additional mass to an eta meson. Differences
between an ordinary ChPT and the above theory we consider are the presence of
the determinate term, which breaks U(1) axial symmetry, thus representing the
anomaly effect, and field U ∈ U(Nf ) instead of U ∈ SU(Nf ). As long as ∆ is
reasonably small, the above Lagrangian well describes physics of pseudo-scalar
mesons at low energy.

1.2 Warm-up: Nf = 1 case

As a warm-up excise, we consider Nf = case here. Due to the U(1) axial
anomaly, the pseudo-scalar meson becomes massive even for the ”massless”
quark. Naively one might expect a behavior that

m2
PS =

2B

f2
m0 + δm2, (2)

where mPS is the pseudo-scalar meson mass, m0 is the quark mass, B is a
constant related to the chiral condensate, and δm2 represents the anomaly effect,

1

effect of anomaly

Note: large N argument by Witten (fundamental rep. for quarks)

c

N
(log detU)2

�
2

(det U + detU †)

N=3 quark fundamental ? 

2-index anti-symmetric ? 

in the large N limit

For simplicity, we use �
2

(det U + detU †) but check results with 
c

N
(log detU)2
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1

naive guess No massless “pion”(eta)m2
PS =

2B

f2
|m0| + �m2

m0

m2
PS

�m2



correct behavior

and the above expectation comes from the m0 ↔ −m0 symmetry of the theory.
However, this naive expectation seems incorrect, as demonstrated by the ChPT
analysis, since the m0 ↔ −m0 symmetry is also broken by the anomaly.

For Nf = 1, U is just a complex number. In this report, for simplicity, we
consider real quark mass, but an extension to the complex mass, equivalent to
the introduction of θ term, is straight-forward. Thus we take M = 2Bm0 ≡ m
where both B > 0 and m0 are real.

We first determine the vacuum structure, U = U0 = eiϕ0 , for which the
effective potential becomes

V (ϕ0) = −(m + ∆) cosϕ0. (3)

Therefore we have

ϕ0 =
{

0 m + ∆ > 0
π m + ∆ < 0 . (4)

We then expand U around U0 as

U(x) = U0e
iπ(x)/f , (5)

so that

L =
1
2
∂µπ(x)∂µπ(x) − (m + ∆)U0 cos (π(x)/f)

=
1
2

[
(∂µπ(x))2 +

|m + ∆|
f2

π(x)2
]

+ O(π4) (6)

We then obtain

m2
PS =

|m + ∆|
f2

, (7)

showing that m2
PS > 0 at m = 0 while m2

PS = 0 at m + ∆ = 0. Neither the
massless point m = 0 is singular and thus special, nor the m ↔ −m symmetry
holds.

2 Phase structure and pion masses at Nf = 2

2.1 Phase structure

We take

M =
(

mu 0
0 md

)
≡ 2B

(
m0u 0
0 m0d

)
, (8)

where we assume mu ≤ md without loss of generality.
We first determine the vacuum structure, assuming

U = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (9)

2

vacuum ansatz
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m = 0 is note special

non-symmetric under m� �m

massless PS meson at m = ��



2. Phase structure and pion masses at N_f=2
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mass term 
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M =
(

mu 0
0 md

)
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(
m0u 0
0 m0d
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We first determine the vacuum structure, assuming
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(
eiϕ3 0
0 e−iϕ3
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2vacuum
which is related to various VEV as

〈ψ̄ψ〉 ≡ 1
2
tr (U0 + U†

0 ) = 2 cos(ϕ0) cos(ϕ3), (10)

〈ψ̄τ3ψ〉 ≡ 1
2
tr τ3(U0 + U†

0 ) = −2 sin(ϕ0) sin(ϕ3), (11)

〈ψ̄iγ5ψ〉 ≡ 1
2i

tr (U0 − U†
0 ) = 2 sin(ϕ0) cos(ϕ3), (12)

〈ψ̄iγ5τ
3ψ〉 ≡ 1

2i
tr τ3(U0 − U†

0 ) = 2 cos(ϕ0) sin(ϕ3). (13)

In terms of U0, the effective potential is given by

V (ϕ0,ϕ3) = −mu cos(ϕ0 + ϕ3) − md cos(ϕ0 − ϕ3) − ∆ cos(2ϕ0), (14)

and the gap equations become

∂V

∂ϕ0
= mu sin(ϕ0 + ϕ3) + md sin(ϕ0 − ϕ3) + 2∆ sin(2ϕ0) = 0 (15)

∂V

∂ϕ3
= mu sin(ϕ0 + ϕ3) − md sin(ϕ0 − ϕ3) = 0. (16)

Trivial solutions are given by ϕ0 = ϕ3 = 0,π or ϕ0 = π−ϕ3 = 0,π, correspond-
ing to U0 = ±12×2.

Non-trivial solutions, where CP is spontaneously broken(the Dashcen phase),
should satisfy

mumd sin(ϕ3) = −m−∆ sin(ϕ0), mumd cos(ϕ3) = −m+∆ cos(ϕ0),(17)

where m± = md ± mu.
For 0 < md < ∆, we have

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(18)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (19)

at m−
c < mu < m+

c (the Dashen phase) where

m±
c = − md∆

∆ ± md
< 0, (20)

while U0 = 1 for mu > m+
c and U0 = −1 for mu < m−

c . Note that sin2(ϕ3) = 1
at md + mu = 0 and sin2(ϕ3) = sin2(ϕ0) = 0 at (mu + md)∆ = ±mumd.

For md > ∆, we have a little complicated phase structure. At mu > m+
c ,

U0 = 1 as before. The Daschen phase appears as

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(21)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (22)
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at −m−
c < mu < m+

c , where

−m−
c = − md∆

md − ∆
< 0. (23)

Note that sin2(ϕ3) = sin2(ϕ0) = 1 at mu = −m−
c .

A new phase appear at mu < −m−
c , where the minimum of the potential is

given by

U0 = ±
(

1 0
0 −1

)
, ( sin2(ϕ3) = sin2(ϕ0) = 1 ), (24)

which however do not satisfy the gap equation. While flavor symmetry is max-
imally broken, the CP symmetry is recovered since U0 is real, and mu = −m−

c

is the second order phase transition point which separates two phases. We call
this region a ”maximally flavor braking phase” without CP violation.
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Figure 1: Phase structure in mu-md plain with ∆ = 1, where the Dashen phase
with ϕ0,ϕ3 "= 0,π are shaded in blue, while the phase with ϕ0 = ϕ3 = ±π/2
are shaded in red. Note that ϕ3 = ±π/2 also on mu + md = 0.
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PS meson masses

In Fig. 1, the phase structure is given in mu-md plain in these case of ∆ = 1,
where CP violating phase (Dashen phase) with ϕ0,ϕ3 != 0,π are shaded in blue,
while the maximally flavor braking phase with ϕ0 = ϕ3 = ±π/2 is shaded in
red.

We plot VEV such as 〈ψ̄ψ〉, 〈ψ̄iγ5ψ〉, 〈ψ̄iγ5τ3ψ〉 and 〈ψ̄τ3ψ〉 in Fig. 2 for
three cases that md < ∆, ∆ < md < 2∆ and 2∆ < md.
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Figure 2: mu dependence of VEV: 〈ψ̄ψ〉 (blue), 〈ψ̄iγ5ψ〉 (black), 〈ψ̄iγ5τ3ψ〉
(red) and −〈ψ̄τ3ψ〉 (green) at ∆ = 1. (Top-Left) md = 0.5 < ∆. The CP
broken phase appears at m−

c < md < m+
c . (Top-Right) ∆ < md = 1.5 < 2∆.

The CP broken phase appears at −m−
c < md < m+

c , while the maximally flavor
braking phase at mu < −m−

c . cos(ϕ3) = 0 at mu = −md = −1.5. (Bottom)
md = 2.5 > 2∆. The CP broken phase appears at −m−

c < md < m+
c , while the

maximally flavor braking phase at mu < −m−
c .

2.2 Pion masses

To calculate PS meson masses, we expand U as U(x) = U0eiΠ(x)/f , where

Π(x) =





η(x) + π0(x)√
2

π−(x)

π+(x)
η(x) − π0(x)√

2



 (25)

with a neutral pion π0 = π3, charged pion π± = π1 ± iπ2 and an eta meson η.
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with a neutral pion π0 = π3, charged pion π± = π1 ± iπ2 and an eta meson η.
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At the second order of Π(x), the Lagrangian becomes

L(2) =
1
2
tr ∂µΠ(x)∂µΠ(x) +

1
4f2

tr (M†U0 + U†
0M)Π(x)2

+
∆

4f2
(detU0 + detU†

0 ) (tr Π(x))2

=
1
2
{
(∂µπ0(x))2 + (∂µη(x))2 + 2∂µπ+(x)∂µπ−(x)

}
+
δm

2f2
η2(x)

+
m+(%ϕ)

4f2

{
η2(x) + π2

0(x) + 2π+(x)π−(x)
}
− m−(%ϕ)

2f2
η(x)π0(x),(26)

where

m±(%ϕ) = md cos(ϕ0 − ϕ3) ± mu cos(ϕ0 + ϕ3)
= m± cos(ϕ0) cos(ϕ3) + m∓ sin(ϕ0) sin(ϕ3), (27)

δm = 2∆ cos(2ϕ0). (28)

While the mass of charged pion mπ± is simply given by

m2
π± =

m+(%ϕ)
2f2

=
m+ cos(ϕ0) cos(ϕ3) + m− sin(ϕ0) sin(ϕ3)

2f2
, (29)

the mass term for π0 and η becomes
1

2f2
(π0(x), η(x))

(
m+(%ϕ) −m−(%ϕ)
−m−(%ϕ) m+(%ϕ) + δm

)(
π0(x)
η(x)

)
. (30)

By diagonalizing the above mass term, we obtain

m2
π̃0

=
1

2f2
[m+(%ϕ) + δm − X] , X =

√
m−(%ϕ)2 + δm2, (31)

m2
η̃ =

1
2f2

[m+(%ϕ) + δm + X] , (32)

whose eigenvectors are given by
(
π̃0(x)
η̃(x)

)
= U−1

(
π0(x)
η(x)

)
=

1√
2X

(
X1/2

+ π0(x) + X1/2
− η(x)

X1/2
− π0(x) − X1/2

+ η(x)

)
,(33)

where

U−1 = U =
1√
2X

(
X1/2 X1/2

−
X1/2

− −X1/2
+

)
, X± = X ± δm. (34)

We consider behaviors of PS meson masses in each region. Since U0 = 1 at
mu ≥ m+

c , we have m±(%ϕ) = m± and δm = 2∆, which imply

m2
π± =

m+

2f2
=

mu + md

2f2
, (35)

m2
π̃0

=
1

2f2

[
m+ + 2∆ −

√
m2

− + 4∆2

]
, (36)

m2
η̃ =

1
2f2

[
m+ + 2∆ +

√
m2

− + 4∆2

]
, (37)
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which is related to various VEV as

〈ψ̄ψ〉 ≡ 1
2
tr (U0 + U†

0 ) = 2 cos(ϕ0) cos(ϕ3), (10)

〈ψ̄τ3ψ〉 ≡ 1
2
tr τ3(U0 + U†

0 ) = −2 sin(ϕ0) sin(ϕ3), (11)

〈ψ̄iγ5ψ〉 ≡ 1
2i

tr (U0 − U†
0 ) = 2 sin(ϕ0) cos(ϕ3), (12)

〈ψ̄iγ5τ
3ψ〉 ≡ 1

2i
tr τ3(U0 − U†

0 ) = 2 cos(ϕ0) sin(ϕ3). (13)

In terms of U0, the effective potential is given by

V (ϕ0,ϕ3) = −mu cos(ϕ0 + ϕ3) − md cos(ϕ0 − ϕ3) − ∆ cos(2ϕ0), (14)

and the gap equations become

∂V

∂ϕ0
= mu sin(ϕ0 + ϕ3) + md sin(ϕ0 − ϕ3) + 2∆ sin(2ϕ0) = 0 (15)

∂V

∂ϕ3
= mu sin(ϕ0 + ϕ3) − md sin(ϕ0 − ϕ3) = 0. (16)

Trivial solutions are given by ϕ0 = ϕ3 = 0,π or ϕ0 = π−ϕ3 = 0,π, correspond-
ing to U0 = ±12×2.

Non-trivial solutions, where CP is spontaneously broken(the Dashcen phase),
should satisfy

mumd sin(ϕ3) = −m−∆ sin(ϕ0), mumd cos(ϕ3) = −m+∆ cos(ϕ0),(17)

where m± = md ± mu.
For 0 < md < ∆, we have

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(18)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (19)

at m−
c < mu < m+

c (the Dashen phase) where

m±
c = − md∆

∆ ± md
< 0, (20)

while U0 = 1 for mu > m+
c and U0 = −1 for mu < m−

c . Note that sin2(ϕ3) = 1
at md + mu = 0 and sin2(ϕ3) = sin2(ϕ0) = 0 at (mu + md)∆ = ±mumd.

For md > ∆, we have a little complicated phase structure. At mu > m+
c ,

U0 = 1 as before. The Daschen phase appears as

sin2(ϕ3) =
(md − mu)2{(mu + md)2∆2 − m2

um2
d}

4m3
um3

d

(21)

sin2(ϕ0) =
(mu + md)2∆2 − m2

um2
d

4mumd∆2
, (22)
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so that m2

π̃0
= 0 at the phase boundary that mu = m+

c .
Similarly at mu ≤ m−

c with md < ∆, we have m±(!ϕ) = −m± and δm = 2∆,
which give

m2
π± = −m+

2f2
= −mu + md

2f2
, (38)

m2
π̃0

=
1

2f2

[
−m+ + 2∆ −

√
m2

− + 4∆2

]
, (39)

m2
η̃ =

1
2f2

[
−m+ + 2∆ +

√
m2

− + 4∆2

]
, (40)

so that m2
π̃0

= 0 at the other phase boundary that mu = m−
c . Note that m+ < 0

in this case.
At −|m−

c | < mu < m+
c , we have

m+(!ϕ) = −mumd

∆
(41)

m−(!ϕ) = −mumd

∆
m2

− cos2(ϕ3) + m2
+ sin2(ϕ3)

m+m−
= −∆(m2

d − m2
u)

mumd
(42)

δm = 2∆ cos(2ϕ0) =
m2

um2
d − (m2

u + m2
d)∆

2

mumd∆
. (43)
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3. Topological susceptibility and massless up quark

(anomalous) WT identities

which agree with the results obtained in the original description. The flavor
singlet η appears as the massless mode associated with the P and CP violating
phase transition at m2 = 4∆2.

2.3.3 2-degenerate flavor QCD with θ = π

Results in the previous sub-subsections suggest an interesting possibility for 2-
degenerate flavor QCD with θ = π, where θ is the coefficient of the FF̃ term.
By the chiral rotation in the previous sub-subsection, we can transform θ = π
to θ = 0 but mu = md = m to mu = −md = −m. In this case we have massless
η at m2 = 4∆2, while three pions becomes massless at m = 0. Results around
m2 = 4∆2 by ChPT analysis might not be reliable if ∆ is large. Since results
around m = 0 can be trusted, however, we can conclude at least that (1) P and
CP are spontaneously broken at small m region and (2) three pions are lighter
than η around m = 0 but they behave m2

π = m2/(f2∆), contrary to PCAC
relation that m2

π = |m|/f2 .

3 Topological susceptibility and massless up quark

3.1 Anomalous WT identities in Nf = 2 QCD

In Nf -flavor QCD, axial Ward-Takahashi identities read

〈
[
∂µAa

µ(x) + ψ̄(x){M, T a}γ5ψ(x) − 2Nfδ
a0q(x)

]
O(y)〉 = δ(4)(x − y)〈δaO(y)〉

for an arbitrary operator O, where Aa
µ = ψ̄γ5γµψ is the axial-vector current,

T a is the flavor matrix, M is the mass matrix, q(x) is the topological charge
density defined by

q(x) =
g2

16π2
εµναβGµν(x)Gαβ(x), (69)

and δa is the infinitesimal local chiral rotation of flavor a. At Nf = 2 with the
diagonal mass matrix M , the above WT identities for O(y) = q(y) with a = 0, 3
lead to

〈
[
∂µ(A0

µ(x) + A3
µ(x)) + 4muū(x)γ5u(x) − 2Nfq(x)

]
q(y)〉 = 0. (70)

Integrating over x, we obtain

χ ≡
∫

d4x 〈q(x)q(y)〉 =
2mu

Nf

∫
d4x 〈ūγ5u(x)q(y)〉 . (71)

Therefore, if no massless mode appears at mu = 0 (but md %= 0), χ = 0, while χ
diverges if a neutral pion becomes massless at mu %= 0, as pointed out in Ref.[1].
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Anomalous WT identities in N_f=2 ChPT

WT identities

3.2 Anomalous WT identities in Nf = 2 ChPT

We will check the above statement using Nf = 2 ChPT. WT identity is com-
pactly written as

〈δxSO(y)〉 = δ(4)(x − y) 〈δO(y)〉 , (72)

where S is the action and δ is the infinitesimal U(1) axial rotation defined by

δU(x) = 2iθ(x)U(x). (73)

We then obtain

δxS = iθ(x)
[
∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
as

2Nfq(x) ≡ ∆
{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)

where the second term comes from δq(y) in ChPT, which is absent in QCD but
represents an effect of the contact term of q(x)q(y) in ChPT. At the leading
order in ChPT, the second term becomes ∆, while the first term is evaluated as

−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)

where

η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)

interns of mass eigenstates. Therefore, we have
∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)

12

effect of contact term = �
which implies

2Nfχ = − 4∆2m+("ϕ)
m2

+("ϕ) − m2
−("ϕ) + 2m+("ϕ)δm

+ ∆. (82)

At mu = 0, we have m+("ϕ) = m−("ϕ) = md and δm = 2∆, so that

2Nfχ = −4∆2md

4md∆
+ ∆ = 0, (83)

which confirms the first statement that χ = 0 at mu = 0.
Since X =

√
m2

−("ϕ) + δm2 and X− = X − δm are both positive,

X−
X

1
2m2

π̃0

→ +∞, mπ̃0 → 0 (84)

in eq. (80), so that

2Nfχ → −∞, mπ̃0 → 0, (85)

which again confirms the second statement that χ negatively diverges as the
neutral pion becomes massless.

3.3 Definition of massless up quark

The analysis in the previous subsections suggests that one can define mu = 0
with md $= 0 from a condition that χ = 0. This is a little different from
the standard statement that the effect of θ term is rotated away at mu = 0.
Instead we define mu = 0 from χ = 0, which, by definition, implies the effect of
topological charge disappears at mu = 0.

A question we may have is ” Is χ = 0 a well-defined condition ? ”. As already
discussed in Ref. [1], a value of χ, and thus the χ = 0 condition, depends on its
definition at finite lattice spacing (cut-off). I however believe that χ = 0 is a
meaningful condition in the continuum limit, but this must be checked explicitly
in lattice QCD calculations, since this issue is highly non-perturbative. We may
imagine the following check. We calculate χ in two different definitions at finite
lattice spacing, with other parameters such as quark masses kept fixed by hadron
masses, and then take continuum limit to see whether χ in two definitions agree
with each other or not. If they agree, we then investigate whether χ = 0 is
excluded or not, in order to reproduce correct hadron spectra in the continuum
limit. If χ $= 0 can be established within errors, a scenario for the solution to
the U(1) problem by massless up quark (mu = 0) can be ruled out.

Since our analysis strongly depends on the validity of the ChPT with the
anomaly contribution, it is also important to confirm existences of the phase
transition and the CP broken phase in the previous section, by lattice QCD
simulations with mu % md, which however are numerically difficult. If such
a CP violating phase exists in QCD, we may use it to test various fermion
formulations including the rooting trick: if some fermion formulation/rooting is
correct, it should correctly reproduce the CP violating phase at mu % md.
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simulations with mu % md, which however are numerically difficult. If such
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formulations including the rooting trick: if some fermion formulation/rooting is
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∂µAµ(x) + tr {MU†(x) − M†U(x)}− ∆{det U(x) − detU†(x)}

]
,

Aµ(x) = f2tr
{
U†(x)∂µU(x) − U∂µU†(x)

}
. (74)

Roughly speaking, we may identify the ”topological charge term” in ChPT
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{
detU(x) − det U†(x)

}
. (75)

As in the QCD, the topological susceptibility χ in ChPT is defined by

2Nfχ ≡
∫

d4x
〈[
∂µAµ(x) + tr {MU†(x) − M†U(x)}

]
q(y)

〉
. (76)

The WT identities bring this to

2Nfχ =
∆2

4

∫
d4x

〈{
detU(x) − det U†(x)

}{
det U(y) − detU†(y)

}〉

+
∆
2
〈
det U(y) + det U†(y)

〉
, (77)
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−2∆2

f2

∫
d4x 〈η(x)η(y)〉 , (78)
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η(x) =
1√
2X

(
X1/2

− π̃0(x) − X1/2
+ η̃(x)

)
(79)
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∫

d4x 〈η(x)η(y)〉 =
1

2X

(
X−
m2

π̃0

+
X+

m2
η̃

)
(80)

=
2f2m+('ϕ)

m2
+('ϕ) − m2

−('ϕ) + 2m+('ϕ)δm
, (81)
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4. An interesting application
mu = �md = �m

� = 0 � = �

chiral rotations

mu = md = m

M =
�
�m 0
0 m

�
M � = V †

LMVR =
�

m 0
0 m

�

so that

〈ψ̄τ3ψ〉 = −2 sin(ϕ0) =






2, m ≥ 2δ

m

∆
, −2∆ < m < 2∆

−2 m ≤ −2∆

(52)

〈̄iγ5ψτ
3ψ〉 = 2 cos(ϕ0) =






0, m2 ≥ 4∆2

√
4∆2 − m2

∆
, m2 < 4∆2

. (53)

This shows that the parity (and CP) is spontaneously broken at m2 < 4∆2,
while the flavor symmetry is always broken in the τ2 direction.

Since m−(&ϕ) = 0, PS meson masses are simply given by

m2
π± = m2

π0
=

m+(&ϕ)
2f2

(54)

m2
η =

m+(&ϕ) + 2δm
2f2

(55)

where

m+(&ϕ) = 2m sin(ϕ0), δm = 2∆(1 − 2 sin2(&ϕ0)). (56)

Note that the isospin symmetry among three pions still holds for their masses.
We therefore obtain

m2
π± = m2

π0
=






1
2f2

2|m|, m2 ≥ 4∆2

1
2f2

m2

∆
, m2 < 4∆2

, (57)

m2
η =






1
2f2

[2|m|− 4∆] , m2 ≥ 4∆2

1
2f2

4∆2 − m2

∆
, m2 < 4∆2

, (58)

where η becomes massless at phase boundaries that m2 = 4∆2, showing that η
is the massless mode associated with the P and CP violating phase transition,
while three pions becomes massless only at m = 0.

2.3.2 Isospin symmetric description

Under the chiral transformation that U → VLUV †
R, the mass term transforms

as M → V †
LMVR. By taking

VR = ei(θ0+θ3τ3) = V †
L , (59)

9with θ0 = θ3 = π/4, we have

M =
(

mu 0
0 md

)
→ M =

(
−mu 0

0 md

)
, ∆ → −∆, (60)

so that the original system is equivalent to mu = md = m with −∆. The
effective potential, given by

V (ϕ0,ϕ3) = −∆ + 2 cosϕ0(∆ cosϕ0 − m cosϕ3), (61)

leads to

cosϕ3 = 1 (62)

cosϕ0 =






1, 2∆ ≤ m

m

2∆
, −2∆ < m < 2∆

−1, m ≤ −2∆

. (63)

This implies

〈ψ̄iγ5ψ〉 = 2 sinϕ0 cosϕ3 =






0, m2 ≥ 4∆2

±2

√
1 − m2

4∆2
, m2 < 4∆2

, (64)

〈ψ̄ψ〉 = 2 cosϕ0 cosϕ3 =






2, 2∆ ≤ m

m

∆
, −2∆ < m < 2∆

−2, m ≤ −2∆

, (65)

which shows that P and CP symmetries are spontaneously broken at m2 < 4∆2,
while isospin symmetry holds.

PS meson masses, given by eqs. (54) and (80) with

m+(&ϕ) = 2m cosϕ0 cosϕ3, m−(&ϕ) = 0, δm = −2∆(2 cos2 ϕ0 − 1) (66)

lead to

m2
π± = m2

π0
=






1
2f2

2|m|, m2 ≥ 4∆2

1
2f2

m2

∆
, m2 < 4∆2

, (67)

m2
η =






1
2f2

[2|m|− 4∆] , m2 ≥ 4∆2

1
2f2

4∆2 − m2

∆
, m2 < 4∆2

, (68)
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m2
� =

1
2f2

m2

�
How can we get this from WT-identities ?

�{�µA3
µ + m tr�3(U † � U)}(x)O(y)� = ��xO(y)�

taking O = tr �3(U † � U) and integrating over x

m

�
d4x �tr �3(U † � U)(x) tr �3(U † � U)(y)� = �2�tr(U + U †)(y)�

= 4 cos�0
= �i

2
�

2
f

cos�0 �0(x)

=
1

m2
�0

m2
�0

=
m

f2
cos�0m

cos2 �0

f2

�
d4x��0(x)�0(y)� = cos�0

=
m

2�

m2
�0

=
m

f2

m

2� one m form WTI, the other m from VEV.



5. Conclusions
Using ChPT with anomaly effect, we show

1. mu = 0 is nothing special if md �= 0. (no symmetry)

2. At mu = m±
c ,�m�

c �= 0, m�0 = 0.

3. ��0� �= 0 at m�
c (�m�

c ) < mu < m+
c . Dashen phase

4. � =� at mu = mc.

5. � = 0 at mu = 0.

rooted Staggered quark 
can not reproduce this.

a solution to strong CP problem

Mike’s Oracles are confirmed by ChPT.

2. Non-standard PCAC relation: m2
� � m2

q

1. Spontaneous CP violation : ��� �= 0

New predictions for 2-flavor QCD with mu = md and � = �
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